AAAI-MAKE: Combining Machine Learning and Knowledge Engineering in Practice

AAAI Spring Symposium on November 11-12, 2020
@ Arlington, Virginia, adjacent to Washington, DC, USA

Join us…

… and work together on a combined machine learning and knowledge engineering based AI!

This symposium brings together practitioners and researchers from various companies, research centers and academia of machine learning and knowledge engineering working together on joint AI that is being explainable and grounded in domain knowledge.

AAAI-MAKE 2020: Combining Machine Learning and Knowledge Engineering in Practice

AAAI-MAKE 2020 is now part of the Fall Symposium Series of the Association for the Advancement of Artificial Intelligence (AAAI), which is typically held during late October or early November on the east coast. The AAAI Fall Symposium Series is an annual set of meetings run in parallel at the Westin Arlington Gateway in Arlington, Virginia adjacent to Washington, DC.

AAAI-MAKE 2020 involves presentations of accepted position, full and short papers, side-tutorial events from industry, (panel) discussions, demonstrations, plenary sessions with breakouts (if required), to foster interaction and contribution among the participants.

«It is designed to bring colleagues together in an intimate forum while at the same time providing a significant gathering point for the AI community. The two and one half day format of the series allows participants to devote considerably more time to feedback and discussion than typical one-day workshops. It is an ideal venue for bringing together new communities in emerging fields.» (

November 11-12, 2020 @ Arlington, Virginia, adjacent to Washington, DC, USA

Special Call for Spring Symposium Authors

Challenging situations require creative solutions – since ongoing joint AI research cannot just be suspended due to a pandemic situation, authors have the opportunity to submit an updated/revised version of their papers for the Fall Symposium, which shall be part of the volume II proceedings published on Submission of updated/revised papers is due on September 7th, 2020.

The updated/revised papers dedicated to Volume II must have at least 30% novel contents. Try to avoid verbatim repetitions such as large blocks of the Volume I paper text copied and try to avoid self-plagiarism. Updated/revised papers are subject to a rigorous and in-depth editorial review. Besides, it may be possible to slightly shift the thematic focus of the paper, incorporate fresh ideas and change the line-up of the authors – additional authors may be invited, others may not be part of this Volume II paper, as long as at least one author previously registered at the spring symposium is listed. In case of a thematic shift, the paper will be peer-reviewed by the program committee to ensure academic integrity.

The papers of Volume I, the AAAI 2020 Spring Symposium, are presented together with the updated/revised papers of Volume II at the AAAI 2020 Fall Symposium. However, due to the shortening of the symposium to two days, it may be necessary to combine the presentation of papers of Volume I and II by the same author(s) in one timeslot.

AAAI-MAKE 2020: Colocation with AAAI Fall Symposium Series

The AAAI 2020 spring symposium on combining machine learning and knowledge engineering in practice (AAAI-MAKE 2020), which was planned to be held at Stanford University, Palo Alto, California, USA, from March 23 to 25, 2020, has the aim of bringing together practitioners and researchers from various companies, research centers, and academia coming from machine learning and knowledge engineering domains.

Despite a voluminous submission phase, and a rigorous and in-depth review by the program committee, the AAAI had to cancel the physical meeting of the Spring Symposium, including this AAAI-MAKE 2020 symposium, due to the spread of Sars-CoV-2, the resulting disease COVID-19. Therefore, AAAI-MAKE 2020 is postponed and part of the AAAI Fall Symposium in Arlington, Virginia, adjacent to Washington, DC, on November 11-12, 2020.

Canceled: March 23-25, 2020 @ Stanford University, Palo Alto, California, USA

Important Dates

  • Extended submission due: 17th of November 2019
  • Notification of authors: 9th of December 2019
  • Registration for authors and invitees: 14th of February 2020
  • Camera-ready: 21st of February 2020 (latest on 28th of February 2020)
  • Registration for others (FCFS): 28th of February 2020
  • Submission updated/revised papers due: September 7th, 2020.
  • Registration for fall symposium: tba
  • Symposium: November 11-12, 2020


  • May 5, 2020: Volume I • AAAI-MAKE 2020 Spring Symposium proceedings published on CEUR-WS.
  • March 4, 2020: AAAI had to cancel the physical meeting following the Stanford University policy related to the current COVID-19 outbreak.
  • February 21, 2020: A first preliminary version of the AAAI-MAKE symposium program, which is subject to change, is available.
  • February 4, 2020: We are delighted to announce that Doug Lenat, CEO of Cycorp and Fellow of AAAI, CSS and AAAS, will give a second keynote speech.
  • January 13, 2020: Registration opens for all accepted authors, invited speakers, symposium participants, and other invited attendees.
  • December 9, 2019: Review process completed, and authors notified.
  • November 22: We are delighted to announce that Natasha Noy from Google AI and former member of the Stanford Center for Biomedical Informatics Research (BMIR) will give a keynote speech.
  • November 18, 2018: The submission deadline has expired, and the review process has started.
  • October 28, 2019: Submission deadline extension until November 17, 2019.
  • September 6, 2019: WikiCFP.
  • September 6, 2019: EasyChair Smart CFP.
  • September 6, 2019: Call for Participation (CfP).
  • September 5, 2019: SSS-20 EasyChair submission site is open.
  • August 1, 2019: Symposium proposal accepted.
  • July 12, 2019: Symposium proposal submitted.
  • April 26, 2019: AAAI-MAKE 2019 papers published on CEUR-WS.


Many current AI solutions rely on machine learning approaches – with great success. Machine learning helps to solve complex tasks based on real-world data instead of pure intuition. It is most suitable for building AI systems when knowledge is not known, or knowledge is tacit.

While machine learning is now able to master data-intensive learning tasks, there are still some challenges. Many tasks require large amounts of training data, especially tasks where events to be predicted are rare. Often, machine output serves merely as a basis for decisions, which are finally made by humans.

Moreover, many business cases and real-life scenarios demand background knowledge and explanations of results and behavior. In medicine, for instance, physicians will likely overrule suggestions if there is no adequate explanation for them. In the self-driving car domain, where safety and control are fundamental, demand for symbolic approaches that can complement machine learning adequately. Moreover, conversational agents require domain knowledge and contextual information to provide satisfactory responses. Furthermore, application areas such as banking, insurance, and life science, are highly regulated and, thus, require compliance with law and regulations. This specific application knowledge needs to be represented and depending on the application scenario strictly enforced, which is the area of knowledge engineering.

Knowledge engineering and knowledge-based systems, which make expert knowledge explicit and accessible, are often based on logic and thus can explain their conclusions. These systems typically require a higher initial effort during development than systems that use machine learning approaches. However, symbolic machine learning and ontology learning approaches are promising for reducing the effort of knowledge engineering.

Because of their complementary strengths and weaknesses, there is an increasing demand in business to integrate knowledge engineering and machine learning for complex business scenarios. Focusing on only one aspect will not exploit the full potential of AI. Conclusively, recent results indicate that explicitly represented application knowledge could assist data-driven machine-learning approaches to converge faster on sparse data and to be more robust against noise, which results in cost efficiency and effectivity for business.

AAAI-MAKE aims for bringing together practitioners and researchers from various companies, research centers and academia of machine learning and knowledge engineering working together on joint AI for practice that is being explainable and grounded in domain knowledge. Participants shall benefit from each other to avoid pitfalls on one hand side and provide the ground for synergetic co-operations to identify the most promising areas for better results.